This work addresses the model predictive control (MPC) of the offset-free tracking problem in the dynamic partial least square (DyPLS) framework. Firstly, state space MPC based on the DyPLS is proposed. Then, two methods are proposed to solve the offset-free problem. One is to reform the state space model as a velocity form. Another is to augment the state space model with a disturbance model and estimate the mismatch between system output and model output with an estimator. Both methods use the system output as a feedback in the control scheme. Hence, the offset-free tracking is guaranteed, and unmeasured step disturbance can be rejected. The results of two simulations demonstrate the effectiveness of proposed methods.