Abstract:Handling uncertainty in an appropriate manner during the real operation of a cyber-physical system (CPS) is critical. Uncertain production scheduling as a part of CPS uncertainty issues should attract more attention. In this paper, a Mixed Integer Nonlinear Programming (MINLP) uncertain model for batch process is formulated based on a unit-specific event-based continuous-time modeling method. Utility uncertainty and uncertain relationship between production rate and utility supply are described by fuzzy theory. The uncertain scheduling model is converted into deterministic model by mathematical method. Through one numerical example, the accuracy and practicability of the proposed model is proved. Fuzzy scheduling model can supply valuable decision options for enterprise managers to make decision more accurate and practical. The impact and selection of some key parameters of fuzzy scheduling model are elaborated.
This paper develops an offset free tracking model predictive control based on a dynamic partial least square (PLS) framework. First, state space model is used as the inner model of PLS to describe the dynamic system, where subspace identification method is used to identify the inner model. Based on the obtained model, multiple independent model predictive control (MPC) controllers are designed. Due to the decoupling character of PLS, these controllers are running separately, which is suitable for distributed control framework. In addition, the increment of inner model output is considered in the cost function of MPC, which involves integral action in the controller. Hence, the offset free tracking performance is guaranteed. The results of an industry background simulation demonstrate the effectiveness of proposed method.
Production planning and scheduling are important bases for production decisions. Concerning the traditional modeling of production planning and scheduling based on Resource-Task Network (RTN) representation, uncertain factors such as utilities are rarely considered as constraints. For the production planning and scheduling problem based on RTN representation in an uncertain environment, this paper formulates the multi-period bi-level integrated model of planning and scheduling, and introduces the uncertainties of demand and utility in planning and scheduling layers respectively. Rolling horizon optimization strategy is utilized to solve the bi-level integrated model iteratively. The simulation results show that the proposed model and algorithm are feasible and effective, can calculate the consumption of utility in every period, decrease the effects of uncertain factors on optimization results, more accurately describe the uncertain factors, and reflect the actual production process.
Orthonormal subspace analysis (OSA) is proposed for handling the subspace decomposition issue and the principal component selection issue in traditional key performance indicator (KPI)-related process monitoring methods such as partial least squares (PLS) and canonical correlation analysis (CCA). However, it is not appropriate to apply the static OSA algorithm to a dynamic process since OSA pays no attention to the auto-correlation relationships in variables. Therefore, a novel dynamic OSA (DOSA) algorithm is proposed to capture the auto-correlative behavior of process variables on the basis of monitoring KPIs accurately. This study also discusses whether it is necessary to expand the dimension of both the process variables matrix and the KPI matrix in DOSA. The test results in a mathematical model and the Tennessee Eastman (TE) process show that DOSA can address the dynamic issue and retain the advantages of OSA.
This paper presents a dual-objective optimization model for production scheduling of bioethanol plant with carbon-efficient strategies. The model is developed throughout the bioethanol production process. Firstly, the production planning and scheduling of the bioethanol plant’s transportation, storage, pretreatment, and ethanol manufacturing are fully considered. Secondly, the carbon emissions in the ethanol manufacturing process are integrated into the model to form a dual-objective optimization model that simultaneously optimizes the production plan and carbon emissions. The effects of different biomass raw materials with optional pelletization density and pretreatment methods on production scheduling are analyzed. The influence of demand and pretreatment cost on selecting a pretreatment method and total profit is considered. A membership weighted method is developed to solve the dual-objective model. The carbon emission model and economic model are integrated into one model for analysis. An example is given to verify the effectiveness of the optimization model. At the end of the paper, the limitation of this study is discussed to provide directions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.