Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating max at 0.5% Carbopol from absorbance detection times.Food structure is, next to the chemical composition and storage conditions, one of the key factors that affect microbial behavior in food products. The effects of food structure are mainly related to the mechanical distribution of water, the chemical redistribution of organic acids, and the mobility of microorganisms (55). In the case of a liquid food product, microbial growth is typically planktonic, and transport of nutrients and metabolites occurs by diffusion, resulting in a homogeneous environment. The majority of foods, however, have some degree of structure, causing microorganisms to be immobilized and constrained to grow as colonies. Within the field of predictive microbiology, where mathematical models are developed for describing microbial growth, inactivation, and survival in food (model systems), most models are based on data obtained in liquid broth media. The scarcity of predictive models that incorporate the effect of structure has been recognized as one of the most important shortcomings in this field of research (41).Conducting experiments on a structured culture medium gives rise to several impracticalities due to the nonliquid nature of the culture medium. Starting from a liquid culture medium, a thickening or gelling agent is added to obtain a structured model system that, ideally, mimics the microstructural properties of the target food product. In order to evaluate the effect of structure on a systematic and consistent basis, the experi-