Let $R$ be a multiplicative hyperring. In this paper, we extend the concept of 2-absorbing hyperideals and 2-absorbing primary hyperideals to the context $\varphi$-2-absorbing hyperideals and $\varphi$-2-absorbing primary hyperideals. Let $E(R)$ be the set of hyperideals of $R$ and $\varphi : E(R) \longrightarrow E(R) \cup \{\phi\}$ be a function. A nonzero proper hyperideal $I$ of $R$ is called a $\varphi$- 2-absorbing hyperideal if for all $x, y, z \in R, xoyoz \subseteq I- \varphi(I)$ implies$xoy \subseteq I$ or $yoz \subseteq I$ or $xoz \subseteq I$. Also, a nonzero proper hyperideal $I$ of $R$ is called a $\varphi$- 2-absorbing primary hyperideal if for all $x, y, z \in R, \ xoyoz \subseteq I- \varphi(I)$ implies$xoy \subseteq I$ or $yoz \subseteq r(I)$ or $xoz \subseteq r(I)$. A number of results concerning them are given.