We present a detailed survey of discrete functional analysis tools (consistency results, Poincaré and Sobolev embedding inequalities, discrete W 1,p compactness, discrete compactness in space and in time) for the so-called Discrete Duality Finite Volume (DDFV) schemes in three space dimensions. We concentrate mainly on the 3D CeVe-DDFV scheme presented in [IMA J. Numer. Anal., 32 (2012), pp. 1574-1603. Some of our results are new, such as a general time-compactness result based upon the idea of Kruzhkov (1969); others generalize the ideas known for the 2D DDFV schemes or for traditional two-point-flux finite volume schemes. We illustrate the use of these tools by studying convergence of discretizations of nonlinear elliptic-parabolic problems of Leray-Lions kind, and provide numerical results for this example.2010 Mathematical subject classification: 65N12, 65M12.