We consider a class of doubly nonlinear degenerate hyperbolicparabolic equations with homogeneous Dirichlet boundary conditions, for which we first establish the existence and uniqueness of entropy solutions. We then turn to the construction and analysis of discrete duality finite volume schemes (in the spirit of Domelevo and Omnès [41]) for these problems in two and three spatial dimensions. We derive a series of discrete duality formulas and entropy dissipation inequalities for the schemes. We establish the existence of solutions to the discrete problems, and prove that sequences of approximate solutions generated by the discrete duality finite volume schemes converge strongly to the entropy solution of the continuous problem. The proof revolves around some basic a priori estimates, the discrete duality features, Minty-Browder type arguments, and "hyperbolic" L ∞ weak-⋆ compactness arguments (i.e., propagation of compactness along the lines of Tartar, DiPerna, . . . ). Our results cover the case of non-Lipschitz nonlinearities.
We prove the well-posedness (existence and uniqueness) of renormalized entropy solutions to the Cauchy problem for quasi-linear anisotropic degenerate parabolic equations with L 1 data. This paper complements the work by Chen and Perthame [Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), pp. 645-668], who developed a pure L 1 theory based on the notion of kinetic solutions.
Abstract. The main goal of this work is to propose a convergent finite volume method for a reaction-diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time L 1 compactness argument that mimics the compactness lemma due to S.N. Kruzhkov. The proofs of these results are given in the Appendix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.