Обсуждается принцип вывода граничных условий в краевых задачах механики растущих микрополярных тел. Приводится вывод уравнений динамики микрополярного континуума в терминах относительных тензоров для тел постоянного состава. Указана определяющая квадратичная форма упругого потенцила (абсолютного скаляра) для линейного гемитропного микрополярного тела. Выведены определяющие соотношения для симметричных и антисимметричных частей тензоров силовых и моментных напряжений. Получены конечные формы уравнений динамики гемитропного микрополярного континуума в терминах скоростей перемещений и микровращений. Полученные динамические уравнения для тел постоянного состава остаются справедливыми и в теориях растущих тел. Предложена процедура преобразования уравнений равновесия для получения граничных условий на поверхности наращивания в терминах относительных тензоров в форме дифференциальных ограничений. Полученные условия справедливы для весьма широкого круга материалов и метаматериалов. При выводе определяющих соотношений на поверхности наращивания активно используется аппарат алгебры рациональных относительных инвариантов. Получены полные системы совместных относительных инвариантов для тензоров силовых, моментных напряжений и единичного вектора нормали, в том числе системы инвариантов, не выдерживающие зеркальных отражений.