Professor Akinlabi’s research and her team has focused on the field of advanced and modern manufacturing processes like Laser Additive Manufacturing (AM), in particular laser material processing. Her other research work is focused on laser metal deposition and functionally graded materials of titanium-based alloys and other materials. Some of the studies she has been involved in focus on cladding titanium with titanium carbide for enhanced wear properties, the cladding of titanium alloy biological implants with hydroxyapatite (HAP) for improved osteo-integration, and the cladding of Grade 5 titanium alloy with copper for improved corrosion properties for marine applications. Akinlabi focuses her investigations on the development of advanced metallic coatings on Ti-6Al-4V substrate using additive manufacturing technology for improved surface performance; with targeted applications in the aerospace, automotive, and shipbuilding industries. This work makes a substantial contribution to knowledge by bringing the theoretical clarity and experimental studies required for the effective assessment of surface degradation mechanisms in additive manufactured Ti-6Al-4V alloy. This is ascribed to the elimination of high residual stresses and crack formation through the optimization of laser processing parameters, leading to enhanced quality of the coatings, surface adhesion between the substrate and the reinforcement materials, microstructural evolution and thus improved mechanical properties. Her research was developed to produce advanced innovative corrosion-wear resistant coatings with enhanced hardness, tribological property, and sustainable anti-corrosion performance thereby, consequently lengthening the lifespan and durability of titanium and its alloys, eliminating material loss and equipment damage, minimizing cost of maintenance, and reduced failure of this material. Despite all the benefits derived from AM technology, there are still a lot of unresolved issues with the technology that has hindered its performance and commercialisation thereby limiting its application to high tolerant utilizations. Professor Akinlabi research on additive manufacturing techniques had produced near-net-shape, light weight and high strength components which has gradually revolutionized the manufacturing sector. The use of the technology is now providing sustainable production benefits, as ability to repair and manufacture components can now be employed to increase product life circle. Against this background, the Additive Manufacturing technology is in itself referred to as a technology of the future despite its versatile applications in the industry. On the other hand, Functionally Graded Materials (FGMs) are advanced materials usually developed for specific and tailored applications. The FGMs also referred to as materials of the future as its applications are not yet fully explored for tailored applications. In this talk, Prof Akinlabi shared some of her research endeavours in the field of AM and FGMs, and also shared the scope on the primary objectives of the joint project which was to be undertaken on FGM of Titanium alloy and Titanium Carbide.
Обсуждается принцип вывода граничных условий в краевых задачах механики растущих микрополярных тел. Приводится вывод уравнений динамики микрополярного континуума в терминах относительных тензоров для тел постоянного состава. Указана определяющая квадратичная форма упругого потенцила (абсолютного скаляра) для линейного гемитропного микрополярного тела. Выведены определяющие соотношения для симметричных и антисимметричных частей тензоров силовых и моментных напряжений. Получены конечные формы уравнений динамики гемитропного микрополярного континуума в терминах скоростей перемещений и микровращений. Полученные динамические уравнения для тел постоянного состава остаются справедливыми и в теориях растущих тел. Предложена процедура преобразования уравнений равновесия для получения граничных условий на поверхности наращивания в терминах относительных тензоров в форме дифференциальных ограничений. Полученные условия справедливы для весьма широкого круга материалов и метаматериалов. При выводе определяющих соотношений на поверхности наращивания активно используется аппарат алгебры рациональных относительных инвариантов. Получены полные системы совместных относительных инвариантов для тензоров силовых, моментных напряжений и единичного вектора нормали, в том числе системы инвариантов, не выдерживающие зеркальных отражений.
Предлагается один общий принцип постановки граничных условий в краевых задачах механики растущих тел. При выводе определяющих соотношений на поверхности наращивания используется аппарат алгебры рациональных инвариантов. Проведен вывод различных вариантов физически непротиворечивых дифференциальных ограничений на поверхности наращивания. Полученные условия справедливы для весьма широкого круга материалов и метаматериалов. Для использования сформулированных дифференциальных ограничений в конкретных приложениях необходима их экспериментальная идентификация. По этой причине полученные результаты могут служить общей основой в прикладных исследованиях по механике растущих тел.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.