2010
DOI: 10.1134/s1560354710510118
|View full text |Cite
|
Sign up to set email alerts
|

On a homoclinic origin of Hénon-like maps

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
22
0
1

Year Published

2012
2012
2020
2020

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(23 citation statements)
references
References 30 publications
0
22
0
1
Order By: Relevance
“…представляют особый интерес для нелинейной динамики, поскольку они имеют «гомоклиническое происхождение», то есть являются нормальными формами отображений первого возвращения вблизи гомоклинических касаний некоторых типов (см., например, [12,15,[22][23][24][25]). Содержание работы.…”
Section: нелинейная динамика 2012 T 8 № 1 с 3-28unclassified
“…представляют особый интерес для нелинейной динамики, поскольку они имеют «гомоклиническое происхождение», то есть являются нормальными формами отображений первого возвращения вблизи гомоклинических касаний некоторых типов (см., например, [12,15,[22][23][24][25]). Содержание работы.…”
Section: нелинейная динамика 2012 T 8 № 1 с 3-28unclassified
“…In its turn, the periodic saddle orbits 𝑃 4 and 𝑃 8 , occurring after the corresponding period-doubling bifurcations, also undergo a cascade of perioddoubling bifurcations. Respectively, the curves of first such period-doubling bifurcations reside below the Neimark-Sacker bifurcation curves NS 4 , NS 8 and coincide with the same curves PD 4 and PD 8 (green dashed lines in Fig. 12b).…”
Section: B=01 Cmentioning
confidence: 74%
“…In particular, we show that hyperchaotic attractors on the base of the period-4 resonant orbit appear in accordance with the scenarios presented in Sec. 2. , and SN 16 are colored in blue, Neimark-Sacker bifurcation curves NS, NS 4 , and NS 8 -in red, and period-doubling bifurcation curves PD 4 , PD 8 , PD 16 , pd 4 , pd 8 , and pd 16 -in green (solid curves are used for representing bifurcations with stable orbits, while dashed -with saddle ones); the points ff 4 , ff 8 , and ff 16 correspond to a fold-flip bifurcation.…”
Section: Three-dimensional Mirá Map: Main Bifurcations and Dynamical ...mentioning
confidence: 99%
“…(2) (for ν = 1), these are so-called Keller or Cremona maps [Essen, 2000]. Such maps are elements of the group of polynomial automorphisms, and while in two dimensions these are known to be conjugate to a composition of affine and elementary maps [Dullin & Meiss, 2000], similar results in higher dimensions are not available [Essen, 2000;Gonchenko et al, 2006Gonchenko et al, , 2010.…”
Section: The Generalized Hénon Mapmentioning
confidence: 99%