Nowadays, the sustainability risks and opportunities start to affect strongly insurance companies in regard to the resulting additional variability of future values of variables taken into account in the decision processes. This is important especially in the era of sustainable non-life insurance promoting, among others, the use of ecological car engines or ecological systems of building heating. The fundamental issue in non-life insurance is to predict future claims (e.g., the aggregate value of claims or the number of claims for a single policy) in a heterogeneous portfolio of policies taking account of claim experience. For this purpose, the so-called credibility theory is used, which was initiated by the fundamental Bühlmann model modified to the Bühlmann–Straub model. Several modifications of the model have been proposed in the literature. One of them is the development of the relationship between the credibility models and statistical mixed models (e.g., linear mixed models) for longitudinal data. The article proposes the use of the parametric bootstrap algorithm to estimate measures of accuracy of the credibility predictor of the number of claims for a single policy taking into account new risk factors resulting from the emergence of green technologies on the considered market. The predictor is obtained for the model which belongs to the class of Generalised Linear Mixed Models (GLMMs) and which is a generalization of the Bülmann–Straub model. Additionally, the possibility of predicting the number of claims and the problem of the assessment of the prediction accuracy are presented based on a policy characterized by new green risk factor (hybrid motorcycle engine) not previously present in the portfolio. The paper presents the proposed methodology in a case study using real insurance data from the Polish market.