Main-stream general-purpose microprocessors require a collection of high-performance interconnects to supply the necessary data movement. The trend of continued increase in core count has prompted designs of packet-switched network as a scalable solution for future-generation chips. However, the cost of scalability can be significant and especially hard to justify for smaller-scale chips. In contrast, a circuit-switched bus using transmission lines and corresponding circuits offers lower latencies and much lower energy costs for smaller-scale chips, making it a better choice than a full-blown network-on-chip (NoC) architecture. However, shared-medium designs are perceived as only a niche solution for small-to medium-scale chips.In this paper, we show that there are many low-cost mechanisms to enhance the effective throughput of a bus architecture. When a handful of highly cost-effective techniques are applied, the performance advantage of even the most idealistically configured NoCs becomes vanishingly small. We find transmission line-based buses to be a more compelling interconnect even for large-scale chipmultiprocessors, and thus bring into doubt the centrality of packet switching in future on-chip interconnect.