2023
DOI: 10.1142/s1664360723500066
|View full text |Cite
|
Sign up to set email alerts
|

On classical orthogonal polynomials and the Cholesky factorization of a class of Hankel matrices

Abstract: Classical moment functionals (Hermite, Laguerre, Jacobi, Bessel) can be characterized as those linear functionals whose moments satisfy a second-order linear recurrence relation. In this work, we use this characterization to link the theory of classical orthogonal polynomials and the study of Hankel matrices whose entries satisfy a second-order linear recurrence relation. Using the recurrent character of the entries of such Hankel matrices, we give several characterizations of the triangular and diagonal matri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?