This work explores the properties characterizing the phase non-closure of multi-look synthetic aperture radar (SAR) interferograms. Specifically, we study the implications of multi-look phase time incongruences on the generation of ground displacement time-series through small baseline (SB) multi-temporal InSAR (Mt-InSAR) methods. Our research clarifies how these phase inconsistencies can propagate through a time-redundant network of SB interferograms and contribute, along with phase unwrapping (PhU) errors, to the quality of the generated ground displacement products. Moreover, we analyze the effects of short-lived phase bias signals that could happen in sequences of short baseline (SB) interferograms and propose a strategy for their mitigation. The developed methods have been tested using both simulated and real SAR data. The latter were collected by the Sentinel-1A/B (C-band) sensors over the study areas of Nevada state, U.S., and Sicily Island, Italy.