Given two analytic nonlinear input-output systems represented as Fliess operators, four system interconnections are considered in a unified setting: the parallel connection, product connection, cascade connection, and feedback connection. In each case, the corresponding generating series is produced and conditions for the convergence of the corresponding Fliess operator are given. In the process, an existing notion of a composition product for formal power series has its set of known properties significantly expanded. In addition, the notion of a feedback product for formal power series is shown to be well defined in a broad context, and its basic properties are characterized.