Given a formal power seriesg(x)=b0+b1x+b2x2+⋯and a nonunitf(x)=a1x+a2x2+⋯, it is well known that the composition ofgwithf,g(f(x)), is a formal power series. If the formal power seriesfabove is not a nonunit, that is, the constant term offis not zero, the existence of the compositiong(f(x))has been an open problem for many years. The recent development investigated the radius of convergence of a composed formal power series likefabove and obtained some very good results. This note gives a necessary and sufficient condition for the existence of the composition of some formal power series. By means of the theorems established in this note, the existence of the composition of a nonunit formal power series is a special case.
Abstract. This paper generalizes Marcinkiewicz's universal primitive on pointwise a.e. convergence directly to higher-dimensional spaces. It is also proved that the set of all universal primitive functions with respect to some given nonzero null sequence is residual and, hence, dense in the Banach space C(I" , Rm) V«, m e N .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.