Abstract:We study the problem of an appropriate choice of derivatives associated with discrete Fourier-Bessel expansions. We introduce a new so-called essential measure Fourier-Bessel setting, where the relevant derivative is simply the ordinary derivative. Then we investigate Riesz transforms and Sobolev spaces in this context. Our main results are L p -boundedness of the Riesz transforms (even in a multi-dimensional situation) and an isomorphism between the Sobolev and Fourier-Bessel potential spaces. Moreover, throu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.