Darboux transformations are viewed as morphisms in a Darboux category. Darboux transformations of type I which we defined previously, make an important subgroupoid consists of Darboux transformations of type I. We describe the orbits of this subgroupoid for hyperbolic operators of order three.We consider the algebras of differential invariants for our operators. In particular, we show that the Darboux transformations of this class can be lifted to transformations of differential invariants (which we calculate explicitly). (2010). Primary 70H06; Secondary 34A26. J 1 = I 1 − T x , J 2 = I 2 + T xy , J 3 = I 3 + I 2 + T xy , J 4 = 0 , J 5 = f − I 4y /2 + I 3x − I 2y + T xxy /2 , where f = I 5 − I 1 I 2 − I 4y /2, T = ln(f ). Here f = 0 and L = CM + f for some C ∈ K[D]. First results on orbits of Darboux groupoid With M of the form M = ∂ y + m: J 1 = I 1 − T y , J 2 = I 2 − T xy , J 3 = 0 , J 4 = I 4 − I 2 + T xy , J 5 = I 1 I 2 − I 1 T xy − I 2 T y − I 3x /2 + I 2x + I 4y + T xyy /2 + T xy T y + f , where f = I 5 − I 3x , T = ln(f ). Here f = 0 and L = CM + f for some C ∈ K[D]. With M of the form M = ∂ x + ∂ y + m: J 1 = I 1 + T x + T y , J 2 = I 2 , J 3 = −I 4 + 2I 3 + I 1y + T xy + T yy , J 4 = I 1x + 2I 4 − I 3 + T xx + T xy , J 5 = I 4y + I 3x + I 1xy /2 − I 1 I 4 − T x I 4 − T y I 4 + T xxy /2 + T xyy /2 + f ,
Mathematics Subject Classification