2014
DOI: 10.1007/s11784-015-0219-2
|View full text |Cite
|
Sign up to set email alerts
|

On inclusions with multivalued operators and their applications to some optimization problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
6
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 22 publications
(8 citation statements)
references
References 18 publications
0
6
0
2
Order By: Relevance
“…To prove this Theorem we use topological degree theory for multivalued vector fields (see, for example, [ 32 ]). By virtue of the a priori estimate ( 47 ), all solutions of the family of operator inclusions ( 46 ) lie in the ball of radius centered at zero.…”
Section: Optimal Feedback Control Problemmentioning
confidence: 99%
“…To prove this Theorem we use topological degree theory for multivalued vector fields (see, for example, [ 32 ]). By virtue of the a priori estimate ( 47 ), all solutions of the family of operator inclusions ( 46 ) lie in the ball of radius centered at zero.…”
Section: Optimal Feedback Control Problemmentioning
confidence: 99%
“…Moreover, we recall that the multimap F takes compact values in H 2 (T, C) and that it has the properties (F 1) and (F 2). Hence, we are in the position to apply the Filippov implicit function lemma in the version furnished in ( [15], Corollary 1.15). Then we can say that there exists a Bochner-measurable selectionû : J → L 2 (T, C) of the multimap F (., Q(.))…”
Section: An Applicationmentioning
confidence: 99%
“…By using the classical arguments (see, for example [15]) the controllability of (5.1) is brought back to the existence of mild solutions for a problem described by the nonautonomous semilinear second order differential inclusion with nonlocal conditions      x (t) ∈ A(t)x(t) + F (t, x(t)), t ∈ J x(0) = g(x)…”
Section: Introductionmentioning
confidence: 99%
“…Такой подход позволил исследовать задачи управления ряда моделей движения неньютоновых сред (суспензий, водных растворов полимеров, различных сред с памятью [6][7][8][9][10][11][12]), которые в силу сложности этих систем ранее были недостаточно изучены с точки зрения оптимального управления.…”
unclassified