1985
DOI: 10.1007/bf01455303
|View full text |Cite
|
Sign up to set email alerts
|

On isolated gorenstein singularities

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
68
0
6

Year Published

1990
1990
2014
2014

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 55 publications
(74 citation statements)
references
References 10 publications
0
68
0
6
Order By: Relevance
“…Строго логкано-нические и канонические вне О квазиоднородные особенности согласно те ореме 2. Для невырожденных строго логканонических особенностей было доказано, что они исключительны тогда и только тогда, когда они имеют чисто эллиптический тип (0,d -1), где d -размерность особенности [4]. Для невырожденных строго логканонических особенностей всегда можно выделить квазиоднородную логка ноническую часть [19, теорема 3.5].…”
Section: с а кудрявцевunclassified
See 2 more Smart Citations
“…Строго логкано-нические и канонические вне О квазиоднородные особенности согласно те ореме 2. Для невырожденных строго логканонических особенностей было доказано, что они исключительны тогда и только тогда, когда они имеют чисто эллиптический тип (0,d -1), где d -размерность особенности [4]. Для невырожденных строго логканонических особенностей всегда можно выделить квазиоднородную логка ноническую часть [19, теорема 3.5].…”
Section: с а кудрявцевunclassified
“…ТЕОРЕМА Рассмотрим особенности типа Тз-Для исключительных особенностей этого типа рассмотрим три возможных случая для 5-струй. Все остальные случаи рассматриваются аналогично, за исключением случая /б = z 4 2) кривая С С Р 2 распадается на две неприводимые коники, которые пе ресекаются в четырех различных точках.…”
Section: в тех же предположениях пусть (х^unclassified
See 1 more Smart Citation
“…We call (X,x) a Du Bois singularity if b°^ = 0 for 0 < q < n. Note that the vanishing of H^Y.Oy) in this range characterizes rational singularities. Du Bois singularities, in particular Gorenstein ones, have been studied by Ishii [6], [7]. She gives an example of a small deformation of a normal isolated Du Bois singularity such that the deformed singularity is no longer Du Bois, and shows that this cannot happen in the Gorenstein case.…”
Section: Du Bois Invariantsmentioning
confidence: 99%
“…The finiteness of limsup^^ àjn had been shown in [17] and now is well known. Further, there are several interesting studies on L -plurigenera (e.g., Watanabe [18], S. Ishii [2,3,4,13]). Among others we will give attention to the following Morales' assertion in connection with our present paper.…”
Section: Introductionmentioning
confidence: 99%