2014
DOI: 10.1007/978-3-319-02132-4_15
|View full text |Cite
|
Sign up to set email alerts
|

On Local Approximation Theorem on Equiregular Carnot-Carathéodory Spaces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
5
0
4

Year Published

2014
2014
2015
2015

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 10 publications
(9 citation statements)
references
References 26 publications
0
5
0
4
Order By: Relevance
“…It was formulated in [G, p. 135] for "sufficiently smooth vector fields". It was proved in [VK2] for C 1,α -smooth vector fields but the same arguments work for the case of C 1 -smooth vector fields since they are based on the property (1.3) [KV1,Theorem 7].…”
Section: Carnot-carathéodory Metric and Ball-box Theoremmentioning
confidence: 87%
See 1 more Smart Citation
“…It was formulated in [G, p. 135] for "sufficiently smooth vector fields". It was proved in [VK2] for C 1,α -smooth vector fields but the same arguments work for the case of C 1 -smooth vector fields since they are based on the property (1.3) [KV1,Theorem 7].…”
Section: Carnot-carathéodory Metric and Ball-box Theoremmentioning
confidence: 87%
“…Observe, that the latter implies d g ∞ (g, x) = d ∞ (g, x). Proposition 1.6 ( [KV,KV1]). The quantity d ∞ is a quasimetric in the sense of [NSW] that is the following relations hold for all points of the neighborhood…”
Section: Local Geometry Of Carnot-carathéodory Spacesmentioning
confidence: 99%
“…Пусть x, y ∈ M. Расстоянием Карно-Каратеодори d cc (x, y) называется величина [16], [19]), но более удобную для работы.…”
unclassified
“…Несмотря на то, что квазиметрика в теореме 3.4 отличается от квазиметрики, изученной в [16], [18] и [19], утверждение верно, так как схема доказательства для d 2 та же самая, что и для d ∞ .…”
unclassified
See 1 more Smart Citation