In actuarial mathematics, the claims of an insurance portfolio are often modeled using the collective risk model, which consists of a random number of claims of independent, identically distributed (i.i.d.) random variables (r.v.s) that represent cost per claim. To facilitate computations, there is a classical assumption of independence between the random number of such random variables (i.e., the claims frequency) and the random variables themselves (i.e., the claim severities). However, recent studies showed that, in practice, this assumption does not always hold, hence, introducing dependence in the collective model becomes a necessity. In this sense, one trend consists of assuming dependence between the number of claims and their average severity. Alternatively, we can consider heterogeneity between the individual cost of claims associated with a given number of claims. Using the Sarmanov distribution, in this paper we aim at introducing dependence between the number of claims and the individual claim severities. As marginal models, we use the Poisson and Negative Binomial (NB) distributions for the number of claims, and the Gamma and Lognormal distributions for the cost of claims. The maximum likelihood estimation of the proposed Sarmanov distribution is discussed. We present a numerical study using a real data set from a Spanish insurance portfolio.