2019
DOI: 10.1155/2019/9049815
|View full text |Cite
|
Sign up to set email alerts
|

On Novel Nonhomogeneous Multivariable Grey Forecasting Model NHMGM

Abstract: A novel nonhomogeneous multivariable grey forecasting model termed NHMGM(1,m,kp,c) is proposed in this paper for use in nonhomogeneous multivariable exponential data sequences. The NHMGM(1,m,kp,c) model is able to reflect the nonlinear relation of the data sequences in the system, and it is proved that many classic grey forecasting models can be derived from NHMGM(1,m,kp,c) model. Parameters of the novel model are obtained by using least square method, and the time response function is given. A numerical examp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 19 publications
0
1
0
Order By: Relevance
“…We are interested in this article in analyzing the influence different pieces of information may have on each other when they are related to the same topic and have the same interest for the audience or readership. Identifying the type and nature of underlying relationship between interacting entities is a key in controlling and predicting system behavior as stipulated in many published articles in related literature [10][11][12][13][14][15].…”
Section: Introductionmentioning
confidence: 99%
“…We are interested in this article in analyzing the influence different pieces of information may have on each other when they are related to the same topic and have the same interest for the audience or readership. Identifying the type and nature of underlying relationship between interacting entities is a key in controlling and predicting system behavior as stipulated in many published articles in related literature [10][11][12][13][14][15].…”
Section: Introductionmentioning
confidence: 99%