In a sequence of independent Bernoulli trials, by counting multidimensional lattice paths in order to compute the probability of a first-passage event, we derive and study a generalized negative binomial distribution of order k, type I, which extends to distributions of order k, the generalized negative binomial distribution of Jain and Consul (1971), and includes as a special case the negative binomial distribution of order k, type I, of . This new distribution gives rise in the limit to generalized logarithmic and Borel-Tanner distributions and, by compounding, to the generalized Pólya distribution of the same order and type. Limiting cases are considered and an application to observed data is presented.2000 Mathematics Subject Classification: 62E15, 62P10, 60C05.