2017
DOI: 10.1007/978-3-319-70136-3_60
|View full text |Cite
|
Sign up to set email alerts
|

On-Road Object Detection Based on Deep Residual Networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 8 publications
0
3
0
Order By: Relevance
“…Using this dataset for pretraining and subsequently fine-tuning on MS COCO significantly enhances performance outcomes. Model Backbone GFLOPS↓/FPS ↑ #params↓ mAP @[0.5,0.95] ↑ Epochs↓ URL Faster RCNN-DC5 (NeurIPS2015) [24] ResNet50 320/16 166M 21.4 37 Link Faster RCNN-FPN (NeurIPS2015) [24] ResNet50 180/26 42M 24.2 37 Link Faster RCNN-FPN (NeurIPS2015) [24] ResNet101 246/20 60M 25.2 -Link RepPoints v2-DCN-MS (NeurIPS2020) [119] ResNeXt101 -/--34.5 * 24 Link FCOS (ICCV2019) [56] ResNet50 177/17 -26.2 36 Link CBNet V2-DCN(ATSS [120]) (TIP2022) [70] Res2Net101 -/-107M 35.7 * 20 Link CBNet V2-DCN(Cascade RCNN) (TIP2022) [70] Res2Net101 -/-146M 37.4 * 32 Link DETR (ECCV2020) [31] ResNet50 86/28 41M 20.5 500 Link DETR-DC5 (ECCV2020) [31] ResNet50 187/12 41M 22.5 500 Link DETR (ECCV2020) [31] ResNet101 52/20 60M 21.9 -Link DETR-DC5 (ECCV2020) [31] ResNet101 253/10 60M 23.7 -Link ViT-FRCNN (arXiv2020) [32] --/--17.8 --RelationNet++ (NeurIPS2020) [35] ResNeXt101 -/--32.8 * -Link RelationNet++-MS (NeurIPS2020) [35] ResNeXt101 [41] ResNeXt101 -/--34.4 * -Link Dynamic DETR (ICCV2021) [44] ResNet50 -/--28.6 * --Dynamic DETR-DCN (ICCV2021) [44] ResNeXt101 -/--30.3 * --TSP-FCOS (ICCV2021) [55] ResNet101 255/12 -27.7 36 Link TSP-RCNN (ICCV2021) [55] ResNet101 254/9 -29.9 96 Link Mask R-CNN (ICCV2021) [57] Conformer-S/16 457.7/-56.9M 28.7 12 Link Conditional DETR-DC5 (ICCV2021) [65] ResNet101 262/-63M 27.2 108 Link SOF-DETR (2022JVCIR) [95] ResNet50 -/--21.7 -Link DETR++ (arXiv2022) [91] ResNet50 -/--22.1 --TOLO-MS (NCA2022) [69] --/57 -24.1 --Anchor DETR-DC5 (AAAI2022) [46] ResNet101 -/--25.8 50 Link DESTR-DC5 (CVPR2022) [68] ResNet101 299/-88M 28.2 50 -Conditional DETR v2-DC5 (arXiv2022) [66] ResNet101 228/-65M 26.3 50 -Conditional DETR v2 (arXiv2022) [66] Hourglass48 521/-90M 32.1 50 -FP-DETR-IN (ICLR2022) [80] --/-36M 26.5 50 Link DAB-DETR-DC5 (arXiv2...…”
Section: Uav123 [109]: This Dataset Contains 123 Videos Acquired Withmentioning
confidence: 99%
“…Using this dataset for pretraining and subsequently fine-tuning on MS COCO significantly enhances performance outcomes. Model Backbone GFLOPS↓/FPS ↑ #params↓ mAP @[0.5,0.95] ↑ Epochs↓ URL Faster RCNN-DC5 (NeurIPS2015) [24] ResNet50 320/16 166M 21.4 37 Link Faster RCNN-FPN (NeurIPS2015) [24] ResNet50 180/26 42M 24.2 37 Link Faster RCNN-FPN (NeurIPS2015) [24] ResNet101 246/20 60M 25.2 -Link RepPoints v2-DCN-MS (NeurIPS2020) [119] ResNeXt101 -/--34.5 * 24 Link FCOS (ICCV2019) [56] ResNet50 177/17 -26.2 36 Link CBNet V2-DCN(ATSS [120]) (TIP2022) [70] Res2Net101 -/-107M 35.7 * 20 Link CBNet V2-DCN(Cascade RCNN) (TIP2022) [70] Res2Net101 -/-146M 37.4 * 32 Link DETR (ECCV2020) [31] ResNet50 86/28 41M 20.5 500 Link DETR-DC5 (ECCV2020) [31] ResNet50 187/12 41M 22.5 500 Link DETR (ECCV2020) [31] ResNet101 52/20 60M 21.9 -Link DETR-DC5 (ECCV2020) [31] ResNet101 253/10 60M 23.7 -Link ViT-FRCNN (arXiv2020) [32] --/--17.8 --RelationNet++ (NeurIPS2020) [35] ResNeXt101 -/--32.8 * -Link RelationNet++-MS (NeurIPS2020) [35] ResNeXt101 [41] ResNeXt101 -/--34.4 * -Link Dynamic DETR (ICCV2021) [44] ResNet50 -/--28.6 * --Dynamic DETR-DCN (ICCV2021) [44] ResNeXt101 -/--30.3 * --TSP-FCOS (ICCV2021) [55] ResNet101 255/12 -27.7 36 Link TSP-RCNN (ICCV2021) [55] ResNet101 254/9 -29.9 96 Link Mask R-CNN (ICCV2021) [57] Conformer-S/16 457.7/-56.9M 28.7 12 Link Conditional DETR-DC5 (ICCV2021) [65] ResNet101 262/-63M 27.2 108 Link SOF-DETR (2022JVCIR) [95] ResNet50 -/--21.7 -Link DETR++ (arXiv2022) [91] ResNet50 -/--22.1 --TOLO-MS (NCA2022) [69] --/57 -24.1 --Anchor DETR-DC5 (AAAI2022) [46] ResNet101 -/--25.8 50 Link DESTR-DC5 (CVPR2022) [68] ResNet101 299/-88M 28.2 50 -Conditional DETR v2-DC5 (arXiv2022) [66] ResNet101 228/-65M 26.3 50 -Conditional DETR v2 (arXiv2022) [66] Hourglass48 521/-90M 32.1 50 -FP-DETR-IN (ICLR2022) [80] --/-36M 26.5 50 Link DAB-DETR-DC5 (arXiv2...…”
Section: Uav123 [109]: This Dataset Contains 123 Videos Acquired Withmentioning
confidence: 99%
“…Faster region-based convolutional neural network (R-CNN) [19], as the name faster R-CNN refers is an extension of fast R-CNN, as well as the name, suggests faster R-CNN is faster than its previous fast R-CNN which emphasizes the strongness of the region proposal network (RPN). By the use of RPN which refers to a fully convolutional network that is responsible for generating proposals with different aspect ratios and various scales.…”
Section: Introductionmentioning
confidence: 99%
“…Region-based CNN (R-CNN) [11] proposed a bounding-box regressionbased approach, later developed into Fast R-CNN [12], Faster R-CNN [13], and R-FCN (Region-based Fully Convolutional Network) [14]. Faster R-CNN uses the region proposal network (RPN) method to classify bounding boxes, followed by finetuning to process the bounding boxes [15,16]. One significant drawback of the two-stage architecture is its slow speed detection, resulting in the inability to produce real-time results as required for AV applications.…”
Section: Introductionmentioning
confidence: 99%