Hybrid communication systems, where millimeter-wave (mmWave) links coexist with microwave links, have been an essential component in the fifth-generation (5G) wireless networks. Nevertheless, the open feature of the wireless medium makes hybrid systems vulnerable to eavesdropping attacks. Eavesdroppers in hybrid communication systems can enhance their attack performance by opportunistically eavesdropping on mmWave or microwave links. This paper, therefore, aims to answer a natural question: in which region do eavesdroppers prefer the mmWave links? To this end, we first formulate this question as an eavesdropping region characterization problem from the physical layer security perspective, where eavesdroppers select the link to eavesdrop based on the ratio between the security performances of the mmWave and microwave links. To model the security performances of both the mmWave and microwave links, we derive closed-form expressions for the secrecy outage probabilities and lower bounds/exact expressions for the secrecy rates of both links. Finally, we provide numerical results to validate our theoretical analysis and also illustrate the mmWave eavesdropping region under various network parameter settings.