We show the mapping class group, $${{\,\mathrm{CAT}\,}}(0)$$
CAT
(
0
)
groups, the fundamental groups of closed 3-manifolds, and certain relatively hyperbolic groups have a local-to-global property for Morse quasi-geodesics. This allows us to generalize combination theorems of Gitik for quasiconvex subgroups of hyperbolic groups to the stable subgroups of these groups. In the case of the mapping class group, this gives combination theorems for convex cocompact subgroups. We show a number of additional consequences of this local-to-global property, including a Cartan–Hadamard type theorem for detecting hyperbolicity locally and discreteness of translation length of conjugacy classes of Morse elements with a fixed gauge. To prove the relatively hyperbolic case, we develop a theory of deep points for local quasi-geodesics in relatively hyperbolic spaces, extending work of Hruska.