We show the mapping class group, $${{\,\mathrm{CAT}\,}}(0)$$
CAT
(
0
)
groups, the fundamental groups of closed 3-manifolds, and certain relatively hyperbolic groups have a local-to-global property for Morse quasi-geodesics. This allows us to generalize combination theorems of Gitik for quasiconvex subgroups of hyperbolic groups to the stable subgroups of these groups. In the case of the mapping class group, this gives combination theorems for convex cocompact subgroups. We show a number of additional consequences of this local-to-global property, including a Cartan–Hadamard type theorem for detecting hyperbolicity locally and discreteness of translation length of conjugacy classes of Morse elements with a fixed gauge. To prove the relatively hyperbolic case, we develop a theory of deep points for local quasi-geodesics in relatively hyperbolic spaces, extending work of Hruska.
We provide a simple, combinatorial criteria for a hierarchically hyperbolic space to be relatively hyperbolic by proving a new formulation of relative hyperbolicity in terms of hierarchy structures. In the case of clean hierarchically hyperbolic groups, this criteria characterizes relative hyperbolicity. We apply our criteria to graphs associated to surfaces and prove that the separating curve graph of a surface is relatively hyperbolic when the surface has zero or two punctures. We also recover a celebrated theorem of Brock and Masur on the relative hyperbolicity of the Weil–Petersson metric on Teichmüller space for surfaces with complexity three.
We generalize a result of Paulin on the Gromov boundary of hyperbolic groups to the Morse boundary of proper, maximal hierarchically hyperbolic spaces admitting cocompact group actions by isometries. Namely we show that if the Morse boundaries of two such spaces each contain at least three points, then the spaces are quasi-isometric if and only if there exists a 2-stable, quasi-möbius homeomorphism between their Morse boundaries. Our result extends a recent result of Charney-Murray, who prove such a classification for CAT(0) groups, and is new for mapping class groups and the fundamental groups of 3-manifolds without Nil or Sol components.
We show that any graph product of finitely generated groups is hierarchically hyperbolic relative to its vertex groups. We apply this result to answer two questions of Behrstock, Hagen, and Sisto: we show that the syllable metric on any graph product forms a hierarchically hyperbolic space, and that graph products of hierarchically hyperbolic groups are themselves hierarchically hyperbolic groups. This last result is a strengthening of a result of Berlai and Robbio by removing the need for extra hypotheses on the vertex groups. We also answer two questions of Genevois about the geometry of the electrification of a graph product of finite groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.