In this study, we investigate the projectivity domain of pure-projective modules. A pure-projective module is called special-pure-projective (s-pure-projective) module if its projectivity domain contains only regular modules. First, we describe all rings whose pure-projective modules are s-pure-projective, and we show that every ring with an s-pure-projective module. Afterward, we research rings whose pure-projective modules are projective or s-pure-projective. Such rings are said to have $*$-property. We determine the right Noetherian rings have $*$-property.