The main object of this paper is to study relative homological aspects as well as further properties of τ -closed submodules. A submodule N of a module M is said to be τ -closed (or τ -pure) provided that M/N is τ -torsion-free, where τ stands for an idempotent radical. Whereas the well-known proper class 𝒞losed (𝒫ure) of closed (pure) short exact sequences, the class τ −𝒞losed of τ -closed short exact sequences need not be a proper class. We describe the smallest proper class 〈τ − 𝒞losed〉 containing τ − 𝒞losed, through τ -closed submodules. We show that the smallest proper class 〈τ − 𝒞losed〉 is the proper classes projectively generated by the class of τ -torsion modules and coprojectively generated by the class of τ -torsion-free modules. Also, we consider the relations between the proper class 〈τ − 𝒞losed〉 and some of well-known proper classes, such as 𝒞losed, 𝒫ure.
The aim of this paper is to reveal the relationship between the proper class generated projectively by g-semiartinian modules and the subprojectivity domains of g-semiartinian modules. A module [Formula: see text] is called g-semiartinian if every nonzero homomorphic image of [Formula: see text] has a singular simple submodule. It is proven that every g-semiartinian right [Formula: see text]-module has an epic projective envelope if and only if [Formula: see text] is a right PS ring if and only if every subprojectivity domain of any g-semiartinian right [Formula: see text]-module is closed under submodules. A g-semiartinian module whose domain of subprojectivity as small as possible is called gsap-indigent. We investigated the structure of rings whose (simple, coatomic) g-semiartinian right modules are gsap-indigent or projective. Furthermore, over right PS rings, necessary and sufficient condition to be gsap-indigent module was determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.