The paper presents the theoretical, simulation, and experimental results on the QCM sensor based on the Butterworth van Dyke (BVD) model with lumped reactive motional circuit elements of fractional order. The equation of the fractional order BVD model of the QCM sensor has been derived based on Caputo definitions and its behavior around the resonant frequencies has been simulated. The simulations confirm the ability of fractional order calculus to cover a wide range of behaviors beyond those found in experimental practice. The fractional order BVD model of the QCM sensor is considered from the perspective of impedance spectroscopy to give an idea of the advantages that fractional order calculus brings to its modeling. For the true values of the electrical parameters of the QCM sensor based on the standard BVD model, the experimental investigations confirm the equivalence of the measurements after the standard compensation of the virtual impedance analyzer (VIA) and the measurements without compensation by fitting with the fractional order BVD model. From an experimental point of view, using fractional order calculus brings a new dimension to impedance analyzer compensation procedures, as well as a new method for validating the compensation.