Les dimensions dels transistors disminueixen per a cada nova tecnologia CMOS. Aquest alt nivell d'integració complica el procés de fabricació dels circuits integrats, apareixent nous mecanismes de fallada. En aquest sentit, els mètodes de diagnosi actuals no són capaços d'assumir els nous reptes que sorgeixen per a les tecnologies nanomètriques. A més, la inspecció física de fallades (Failure Analysis) no es pot aplicar des d'un bon començament, ja que els costos de la seva utilització són massa alts. Per aquesta raó, conèixer el comportament dels defectes i dels seus mecanismes de fallada és imprescindible per al desenvolupament de noves metodologies de diagnosi que puguin superar aquests nous reptes. En aquest context, aquesta tesi presenta l'anàlisi dels mecanismes de fallada i proposa noves metodologies de diagnosi per millorar la localització de ponts (bridge) i oberts (open). <br/>Per a la diagnosi de ponts, alguns treballs s'han beneficiat de la informació obtinguda durant el test de corrent (IDDQ). No obstant no han tingut en compte l'impacte del corrent de dowsntream. Per aquesta raó, en aquesta tesi s'analitza l'impacte d'aquest corrent degut als ponts i la seva dependència amb la tensió d'alimentació (VDD). A més, es presenta una nova metodologia de diagnosi basada en els múltiples nivells de corrent. Aquesta tècnica considera els corrents generats per les diferents xarxes connectades pel pont. Aquesta metodologia s'ha aplicat amb èxit a un conjunt de xips defectuosos de tecnologies de 0.18 µm i 90 nm.<br/>Com alternativa a les tècniques basades en corrent, els shmoo plots també poden ser útils per a la diagnosi. Tradicionalment s'ha considerat que valors baixos de VDD són més apropiats per a la detecció de ponts. Tanmateix es demostra en aquesta tesi que en presència de ponts connectant xarxes equilibrades, valors alts de VDD són fins i tot més apropiats que tensions baixes, amb la conseqüent implicació que això té per a la diagnosi.<br/>En relació als oberts, s'ha dissenyat i fabricat un xip amb la inclusió intencionada d'oberts complets (full opens) i oberts resistius. Experiments fets amb els xips demostren l'impacte de les capacitats d'acoblament de les línies veïnes. A més, pels oberts resistius s'ha comprovat la influència de l'efecte història i de la localització de l'obert en el retard. Tradicionalment s'ha considerat que el retard màxim s'obté quan un obert resistiu es troba al principi de la línia. No obstant això no es pot generalitzar a oberts poc resistius, ja que en aquests casos es demostra que el màxim retard s'obté per a una localització intermèdia. A partir dels resultats experimentals obtinguts amb el xip, s'ha desenvolupat una nova metodologia per a la diagnosi d'oberts complets a les línies d'interconnexió. Aquest mètode divideix la línia en diferents segments segons la informació de layout de la pròpia línia. Aleshores coneixent els valors de les línies veïnes, es prediu la tensió del node flotant, la qual es compara amb el resultat experimental obtingut a la màquina de test. Aquest mètode s'ha aplicat amb èxit a un seguit de xips defectuosos pertanyents a una tecnologia de 0.18 µm.<br/>Finalment, s'ha analitzat l'impacte que tenen els corrents de túnel a través del terminal de porta en presència d'un obert complet. Com les dimensions disminueixen per a cada nova tecnologia, l'òxid de porta és suficientment prim com per generar corrents de túnel que influencien el node flotant. Aquests corrents generen una evolució temporal al node flotant fins fer-lo arribar a un estat quiescent, el qual depèn de la tecnologia. Es comprova que aquestes evolucions temporals són de l'ordre de segons per a una tecnologia de 0.18 µm. Tanmateix les simulacions demostren que aquests temps disminueixen fins a uns quants µs per a tecnologies futures. Degut a l'impacte dels corrents de túnel, un seguit d'oberts complets s'han diagnosticat en xips de 0.18 µm.
Transistor dimensions are scaled down for every new CMOS technology. Such high level of integration has increased the complexity of the Integrated Circuits (ICs) manufacturing process, arising new complex failure mechanisms. However, present diagnosis methodologies cannot afford the challenges arisen for future technologies. Furthermore, physical failure analysis, although indispensable, is not feasible on its own, since it requires high cost equipment, tools and qualified personnel. For this reason, a detailed understanding and knowledge of defect behaviours is a key factor for the development of improved diagnosed methodologies to overcome the challenges of nanometer technologies. In this context, this thesis presents the analysis of existing and new failure mechanisms and proposed new diagnosis methodologies to improve the diagnosis of faults, focused on bridging and open faults.<br/>IDDQ is a well known technique for the diagnosis of bridging faults. However, previous works have not considered the impact of the downstream current for the diagnosis of such faults. In this thesis, the impact and the dependence of the downstream current with the power supply voltage (VDD) is analyzed and experimentally measured. Furthermore, a multiple level IDDQ based diagnosis technique is presented. This method takes benefit from the currents generated by the different network excitations. This technique is successfully applied to real defective devices from 0.18 µm and 90 nm technologies.<br/>As an alternative to current based techniques, shmoo plots can be also useful for diagnosis purposes. Low voltage has been traditionally considered as an advantageous condition for the detection of bridging faults. However, it is demonstrated that in presence of bridges connecting balanced n- and p-networks, high VDD values are also advantageous for the detection of bridges, which has its direct translation into diagnosis application. Experimental evidence of this fact is presented.<br/>Related to open faults, an experimental chip has been designed and fabricated in a 0.35 µm technology, where full and resistive open defects have been intentionally added. Different experiments have been carried out so that the impact of the neighbouring coupling capacitances has been quantified. Furthermore, for resistive opens, experiments have demonstrated the influence of the history effect and the location of the defect on the delay. Traditionally, it has been reported that the highest delay is obtained when the resistive open is located at the beginning of the net. Nevertheless, this thesis demonstrates that this is not true for low resistive open, since the highest delay is obtained for an intermediate location. Experimental measurements prove this behaviour.<br/>Derived from the results obtained with the fabricated chip, a new methodology for the diagnosis of interconnect full open defects is developed. The FOS (Full Open Segment) method divides the interconnect line into different segments based on the topology of the faulty line. Knowing the logic state of the neighbouring lines, the floating net voltage is predicted and compared with the experimental results obtained on the tester. This method has been successfully applied to a set of 0.18 µm defective devices. <br/>Finally, the impact of the gate tunnelling leakage currents on the behaviour of full open defects has also been analyzed. As technology dimensions are scaled down, the oxide thickness is thin enough so that the gate tunnelling leakage currents influence the behaviour of floating lines. They cause transient evolutions on the floating node until reaching the steady state, which is technology dependent. It is experimentally demonstrated that these evolutions are in the order of seconds for a 0.18µm technology. However, for future technologies, simulations show that the evolutions decrease down to a few µs. Based on this factor, some full open faults present in 0.18 µm technology devices are diagnosed.