1995
DOI: 10.1175/1520-0442(1995)008<0897:otaoca>2.0.co;2
|View full text |Cite
|
Sign up to set email alerts
|

On the Application of Cluster Analysis to Growing Season Precipitation Data in North America East of the Rockies

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
211
0
10

Year Published

1997
1997
2015
2015

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 307 publications
(222 citation statements)
references
References 54 publications
1
211
0
10
Order By: Relevance
“…Les données utilisées sont les précipitations mensuelles de 1961 à 2000 d'un réseau de trente quatre stations réparties dans le bassin et à proximité, provenant de la base de données de l'ASECNA de Cotonou (Bénin), de la Météorologie Nationale de Lomé (Togo), du Centre de Recherches de Climatologie (Dijon) et du Global Historical Climate Network (Vose et al 1992 (Fichet 1987), considéré comme le plus pertinent au sein des méthodes agrégatives (Gong et Richman 1995 (Fig. 2(a)).…”
Section: Donnees Et Methodesunclassified
“…Les données utilisées sont les précipitations mensuelles de 1961 à 2000 d'un réseau de trente quatre stations réparties dans le bassin et à proximité, provenant de la base de données de l'ASECNA de Cotonou (Bénin), de la Météorologie Nationale de Lomé (Togo), du Centre de Recherches de Climatologie (Dijon) et du Global Historical Climate Network (Vose et al 1992 (Fichet 1987), considéré comme le plus pertinent au sein des méthodes agrégatives (Gong et Richman 1995 (Fig. 2(a)).…”
Section: Donnees Et Methodesunclassified
“…The analysed area extends from 35°N to 65°N and from 40°W to 40°E. The classification method is based on principal component analysis (PCA) in a T-mode (Bartzokas and Metaxas, 1996;Huth, 1996a;Compagnucci and Salles, 1997) combined with the k-means method of cluster analysis (Gong and Richman, 1995) with Euclidean distance used as a dissimilarity measure. It was decided to employ the T-mode PCA because it is very efficient at uncovering the underlying structure of data (it best reproduces the circulation types known in advance), whereas the major advantage of the k-means method consists in its ability to provide well-separated clusters (Huth, 1996b).…”
Section: Data and Analysis Methodsmentioning
confidence: 99%
“…It was decided to employ the T-mode PCA because it is very efficient at uncovering the underlying structure of data (it best reproduces the circulation types known in advance), whereas the major advantage of the k-means method consists in its ability to provide well-separated clusters (Huth, 1996b). The connection of the two methods, which is briefly described below, relieves the drawbacks of either of them: a difficult application of T-mode PCA to very large datasets and a dependence of the output of k-means clustering on the initial selection of grid-points (Gong and Richman, 1995;Huth, 1996b).…”
Section: Data and Analysis Methodsmentioning
confidence: 99%
“…Hierarchical cluster methods, such as the Ward's method, have been used frequently for distinguishing precipitation regimes (Gong and Richman, 1995;Ramos, 2001) and other environmental patterns (Allen and Walsh, 1996). The events are clustered based on their morning (06:00 LST) convective triggering potential and low-level humidity (e.g.…”
Section: Atmospheric Conditionsmentioning
confidence: 99%