“…Anomaly detection (Singha, Guntukub, Thakura, & Hota, 2014), filtering (Varatharajan, Manogaran, & Priyan, 2018), outlier removal (Wang et al, 2017), ratios (Xuan, Ligon, Srimani, Ge, & Luo, 2017), metadata (Ghiringhelli et al, 2017) Transformation Format conversion (Kumara, Paik, Zhang, Siriweera, & Koswatte, 2015), imputation, smoothing (Hu, Wen, Chua, & Li, 2014), normalization/transformation, exponential differentiation, classification (Hu et al, 2015;Zhang, He, Zhang, Peng, & Long, 2017), spatial interpolation (Schlapfer, Nieke, & Itten, 2007), coordinate transformation (Xie, Zhou, Vivoni, Hendrickx, & Small, 2005), Evaluation Bias correction (Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017), sensitivity analysis (Delen, Tomak, Topuz, & Eryarsoy, 2017), uncertainty evaluation (Matott, Babendreier, & Purucker, 2009) Reduction Compression (Sayood, 2017), redundancy elimination, machine learning (Stateczny & Wlodarczyk-Sielicka, 2014), clustering (Manogaran et al, 2018), classification (Camara et al, 2016), feature selection (Rehman et al, 2016), data fusion (Ahmad, Paul, Rathore, & Chang, 2016), factor analysis (Hayton, Allen, & Scarpello, 2004), revised averaging scheme Augmentation Flipping, rotating, scaling, cropping, translation (Yu, Wu, Luo, & Ren, 2017;Kravchenko, Tishaieva, & Perkhaliuk, 2018) Data transformation methods (e.g. normalization, smoothing, interpolation, coordinate transformation, time series) are necessary to prepare data for further data analytics in terms of spatiotemporal resolution, data format, coordinate projection, and others (Friedman, Hastie, & Tibshirani, 2008;Jenerette et al, 2016;Li, Kamarianakis, Ouyang, Turner, & Brazel, 2017;Sugumaran, Burnett, & Blinkmann, 2012).…”