2002
DOI: 10.1016/s0012-365x(01)00378-8
|View full text |Cite
|
Sign up to set email alerts
|

On the combinatorics of polynomial generalizations of Rogers–Ramanujan-type identities

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
7

Year Published

2003
2003
2011
2011

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(10 citation statements)
references
References 0 publications
0
3
0
7
Order By: Relevance
“…Note: If P i,n represents the polynomial sequence for identity 3.i for i = 8, 12, 13, then P 13,n = P 12,n−1 + P 8,n−1 + q n−1 P 12,n−2 . j≧0 k≧0 The proof also appears in Santos [61]. j≧0 k≧0…”
Section: Identitiesmentioning
confidence: 78%
See 1 more Smart Citation
“…Note: If P i,n represents the polynomial sequence for identity 3.i for i = 8, 12, 13, then P 13,n = P 12,n−1 + P 8,n−1 + q n−1 P 12,n−2 . j≧0 k≧0 The proof also appears in Santos [61]. j≧0 k≧0…”
Section: Identitiesmentioning
confidence: 78%
“…Further examples of recurrence proofs may be found elsewhere in the literature: Santos [60, Chapter 2] contains proofs of Identities 3.29 and 3.38-b. Santos proves Identity 3.20 in [61]. Proofs of Identities 3.8 and 3.12 are given in Santos and Sills [62, Theorems 1 and 3].…”
Section: Recurrence Proofmentioning
confidence: 96%
“…We use a method introduced by Andrews [5], and used by Santos [9] to obtain finite versions of Rogers-Ramanujan type identities. Basic tools are presented in the following section.…”
Section: Or In Terms Of Partitions One Interpretation Obtained By Thmentioning
confidence: 99%
“…Santos em [8], provou uma fórmula explícita para a família de polinômios P k n para o caso k = 0. Para o caso k = 1, temos a seguinte conjecturada dada em [9]:…”
Section: Uma Fórmula Explícita Para Os Números De Fibonacciunclassified
“…Observamos que as partições Frobenius de alternânciaímpar com maior parte igual a N +1 são geradas por f 16 (q, t) e são um caso particular das partições autoconjugadas Frobenius de alternânciaímpar, caso k sejaímpar (par), com maior parte N + k e o elemento do topo ≥ k, quando fazemos k = 1. O caso k = 0, do Teorema (3.1) fornece um resultado ja obtido por Santos em [8].…”
Section: (36)unclassified