Novel solid solutions of aluminum in tungsten carbide (WC) with or without carbon vacancies, which can be expressed by the chemical formula (W(0.5)Al(0.5))C(1-x) (x=0.0-0.5), have been synthesized by the solid-state reaction of W(0.5)Al(0.5) alloy and the proper amount of carbon at around 1673 K in vacuum. The reaction time decreases from 73 to 50 h on increasing the carbon vacancy concentration from 0 to 50 %. The formation of the intended products is certified, by X-ray diffraction, environmental scanning electron microscopy-energy-dispersive X-ray analysis, and inductively coupled plasma-atomic emission spectroscopy, even though the carbon vacancy concentration reaches the astonishing value of 50 %. The as-prepared (W(0.5)Al(0.5))C(1-x) samples have been identified as the hexagonal WC-type structure belonging to the space group P6m2 (Z=1). Moreover, the crystallographic results reveal that the substituting aluminum atoms in the WC are located in the 1a site (the W atom position of the WC structure) and the cell parameters decrease slightly with increasing vacancy concentration. The hardness of the (W(0.5)Al(0.5))C(1-x) system increases up to a maximum 2659 kg mm(-2) at a carbon vacancy concentration of about 35 %, and the density of (W(0.5)Al(0.5))C(1-x) is far lower than that of WC.