Purpose
Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research progress of snake-inspired robots according to their application environments. It classifies snake-inspired robots according to the numbers of degrees of freedom in each joint and briefly describes the modeling and control of snake-inspired robots. Finally, the application fields and future development trends of snake-inspired robots are analyzed and discussed.
Design/methodology/approach
This paper summarizes the research progress of snake-inspired robots and clarifies the requirements of snake-inspired robots for self-adaptive environments and multi-functional tasks. By equipping various sensors and tool modules, snake-inspired robots are developed from fixed-point operation in a single environment to autonomous operation in an amphibious environment. Finally, it is pointed out that snake-inspired robots will be developed in terms of rigid and flexible deformable structure, long endurance and multi-function and intelligent autonomous control.
Findings
Inspired by the modular and reconfigurable concepts of biological snakes, snake-inspired robots are well adapted to unknown and changing environments. Therefore, snake-inspired robots will be widely used in industrial, military, medical, post-disaster search and rescue applications. Snake-inspired robots have become a hot research topic in the field of bionic robots.
Originality/value
This paper summarizes the research status of snake-inspired robots, which facilitates the reader to be a comprehensive and systematic understanding of the research progress of snake-inspired robots. This helps the reader to gain inspiration from biological perspectives.