1974
DOI: 10.1214/aop/1176996496
|View full text |Cite
|
Sign up to set email alerts
|

On the Convergence of Sequences of Branching Processes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

3
77
0
1

Year Published

1986
1986
2017
2017

Publication Types

Select...
5
4
1

Relationship

0
10

Authors

Journals

citations
Cited by 80 publications
(81 citation statements)
references
References 0 publications
3
77
0
1
Order By: Relevance
“…This model arises as the limit of Galton-Watson processes; where individuals behave independently one from each other and each individual gives birth to a random number of offspring, with the same offspring distribution (see for instance Grimvall [19]). More precisely, a CB-process is a [0, ∞]-valued strong Markov process Y = (Y t , t ≥ 0) with cádlág paths such that satisfies the branching property: for all θ ≥ 0 and x, y ≥ 0, E x+y e −θYt = E x e −θYt E y e −θYt .…”
Section: Introductionmentioning
confidence: 99%
“…This model arises as the limit of Galton-Watson processes; where individuals behave independently one from each other and each individual gives birth to a random number of offspring, with the same offspring distribution (see for instance Grimvall [19]). More precisely, a CB-process is a [0, ∞]-valued strong Markov process Y = (Y t , t ≥ 0) with cádlág paths such that satisfies the branching property: for all θ ≥ 0 and x, y ≥ 0, E x+y e −θYt = E x e −θYt E y e −θYt .…”
Section: Introductionmentioning
confidence: 99%
“…In this case, the processes (X (n) k ) k∈Z + cannot start from 0, and the process X (n) nt can be centred by subtracting the initial value X (n) 0 , as in [13]. With suitable normalization, the limiting process will be a Wiener process, and its drift and variance depend on the limiting behaviour of the offspring mean and variance, respectively; see [4,Theorem 4.4]. In our case, the (deterministic) time change concerning the limit process ( M(t)) t∈R + is usually not linear, which is an effect of the immigration part.…”
Section: Introductionmentioning
confidence: 99%
“…Cette approche a été généralisée, notamment au cas avec immigration [15], mais pose de sérieuses difficultés dans le cas d'environnements fluctuants. Dans la même veine, Grimwall [31] donne une condition nécessaire et suffisante pour la convergence de processus de Galton Watson renormalisés, grâce à des tableaux triangulaires. Ces convergences peuvent être reliées à la convergence d'un triplet caractéristique de la loi de reproduction du processus de Galton-Watson.…”
Section: Processus De Branchement à Temps Et Espace D'états Continusunclassified