2021
DOI: 10.5802/jtnb.1141
|View full text |Cite
|
Sign up to set email alerts
|

On the distribution ofαpmodulo one in imaginary quadratic number fields with class number one

Abstract: L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb. centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
11
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

3
3

Authors

Journals

citations
Cited by 9 publications
(12 citation statements)
references
References 17 publications
1
11
0
Order By: Relevance
“…Analogues of these results for quadratic number fields have recently been obtained by Harman, the first-named author, Mazumder and Technau in several papers (see [12], [1], [2], [3]) who achieved an analogue of Harman's exponent 7/22 in this setting. Here we consider an analogue for function fields.…”
Section: Introductionsupporting
confidence: 63%
“…Analogues of these results for quadratic number fields have recently been obtained by Harman, the first-named author, Mazumder and Technau in several papers (see [12], [1], [2], [3]) who achieved an analogue of Harman's exponent 7/22 in this setting. Here we consider an analogue for function fields.…”
Section: Introductionsupporting
confidence: 63%
“…We first establish (52), ( 53), ( 54) and (73) for the original functions W , ω and ω used in [1]. In this paper, we worked in the ring of integers O rather than the set of ideals I throughout and hence defined our weight functions on O instead of I.…”
Section: Imaginary Quadratic Casementioning
confidence: 99%
“…The function ω is then ω(a) = λW (a) with λ = 4δ 2 for some parameter δ which specifies the weight function ω. For the precise definition of ω in the setting of O, we refer to [1]. Here we just mention that it detects elements n of O such that the distance of nα to the nearest element a of O is not much larger than δ.…”
Section: Imaginary Quadratic Casementioning
confidence: 99%
See 2 more Smart Citations