L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb. centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.centre-mersenne.org/ Journal de Théorie des Nombres de Bordeaux 32 (2020), 719-760 On the distribution of αp modulo one in imaginary quadratic number fields with class number one par Stephan BAIER et Marc TECHNAU Résumé. Nous étudions la répartition de αp modulo un dans les corps quadratiques imaginaires K ⊂ C dont le nombre de classes est égal à un, où p parcourt l'ensemble des idéaux premiers de l'anneau des entiers O = Z[ω] de K. Par analogie avec un résultat classique dû à R. C. Vaughan, nous obtenons que l'inégalité αp ω < N(p) −1/8+ est satisfaite pour une infinité de p, où ω mesure la distance de ∈ C à O et N(p) est la norme de p. La preuve est basée sur la méthode du crible de Harman et utilise des analogues pour les corps de nombres d'idées classiques dues à Vinogradov. De plus, nous introduisons un lissage qui nous permet d'utiliser la formule sommatoire de Poisson.
We investigate the distribution of αp modulo one in quadratic number fields 𝕂 with class number one, where p is restricted to prime elements in the ring of integers of 𝕂. Here we improve the relevant exponent 1/4 obtained by the first- and third-named authors for imaginary quadratic number fields [On the distribution of αp modulo one in imaginary quadratic number fields with class number one, J. Théor. Nombres Bordx. 32 (2020), no. 3, 719–760]) and by the first- and second-named authors for real quadratic number fields [Diophantine approximation with prime restriction in real quadratic number fields, Math. Z. (2021)] to 7/22. This generalizes a result of Harman [Diophantine approximation with Gaussian primes, Q. J. Math. 70 (2019), no. 4, 1505–1519] who obtained the same exponent 7/22 for ℚ (i) by extending his method which gave this exponent for ℚ [On the distribution of αp modulo one. II, Proc. London Math. Soc. 72, (1996), no. 3, 241–260]. Our proof is based on an extension of Harman’s sieve method to arbitrary number fields. Moreover, we need an asymptotic evaluation of certain smooth sums over prime ideals appearing in the above-mentioned work by the first- and second-named authors, for which we use analytic properties of Hecke L-functions with Größencharacters.
We prove an upper bound for the least prime in an irrational Beatty sequence. This result may be compared with Linnik's theorem on the least prime in an arithmetic progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.