Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A study has been carried out of the aerodynamic interference flow arising at the junction of a cambered, swept-forward wing and a flat plate on which a fully-developed turbulent boundary layer approached the junction. CFD predictions of the pressure field in the junction region were carried out. Flow visualisation tests and surface pressure measurements over a wind-tunnel model were conducted at incidences from -3° to +9°. With the wing at zero incidence, a single-tube yawmeter was used to explore the flow around the leading edge of the junction arid an X-wire anemometer to examine the mean velocity and turbulence fields in the streamwise corners and at the trailing edge. The Reynolds number of the tests, based on the streamwise chord and a free-stream velocity of 30ms-1, was 1·03 x 106. At low incidence, a very weak separation occurred in the plate boundary layer, a very short distance upstream of the junction. However the oncoming stream converges into the junction, appearing to confine any vortical motion at the leading edge to within a very thin layer below the closest point of measurement to the plate. Rudimentary vortical flow developed slightly downstream of the leading edge, but dissipated further downstream. Although weak vortices were measured in the trailing-edge cross-flow plane, these were attributed to separations just upstream. The turbulence activity in the streamwise corners was found to be surprisingly low, especially on the compression side of the junction. Estimates of the skin-friction showed that it was lower over the majority of the trailing-edge crossplane than in the plate boundary layer upstream of the junction. At higher incidences, flow visualisations revealed severe stall in the junction, with large three-dimensional recirculating regions forming.
A study has been carried out of the aerodynamic interference flow arising at the junction of a cambered, swept-forward wing and a flat plate on which a fully-developed turbulent boundary layer approached the junction. CFD predictions of the pressure field in the junction region were carried out. Flow visualisation tests and surface pressure measurements over a wind-tunnel model were conducted at incidences from -3° to +9°. With the wing at zero incidence, a single-tube yawmeter was used to explore the flow around the leading edge of the junction arid an X-wire anemometer to examine the mean velocity and turbulence fields in the streamwise corners and at the trailing edge. The Reynolds number of the tests, based on the streamwise chord and a free-stream velocity of 30ms-1, was 1·03 x 106. At low incidence, a very weak separation occurred in the plate boundary layer, a very short distance upstream of the junction. However the oncoming stream converges into the junction, appearing to confine any vortical motion at the leading edge to within a very thin layer below the closest point of measurement to the plate. Rudimentary vortical flow developed slightly downstream of the leading edge, but dissipated further downstream. Although weak vortices were measured in the trailing-edge cross-flow plane, these were attributed to separations just upstream. The turbulence activity in the streamwise corners was found to be surprisingly low, especially on the compression side of the junction. Estimates of the skin-friction showed that it was lower over the majority of the trailing-edge crossplane than in the plate boundary layer upstream of the junction. At higher incidences, flow visualisations revealed severe stall in the junction, with large three-dimensional recirculating regions forming.
SummaryThe forces due to normal pressure have been measured in the region of the junction between a rear-loaded wing swept forward at 28°, and a flat plate on which a turbulent boundary layer had developed. The Reynolds number was 1·03 × 106, based on the streamwise wing-chord of 500 mm. At low incidences, 0° < α ≤ 6°, the local pressure drag coefficients were found to be negativeaway from the junction, and the interaction with the junction was found to be favourable;that is the pressure drag coefficient became more negative as the junction was approached. At α = −3° the pressure drag coefficient changed from a positive value away from the junction to a negative value close to the plate. These results contrast with those for a swept-back wing-plate interaction, which has been reported as being unfavourable so far as the pressure drag was concerned. At 6° incidence, the interaction remained favourable but there was evidence of root stall beginning. At an incidence of 9°, root stall was much more marked and the positive pressure drag coefficient increased as the junction was approached.
With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flowfield measurements were performed in a large-scale, linear, vane cascade. The flowfield measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flow-field results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.