A fixed-wing UAV that is capable of vertical takeoff/landing is a hybrid aerial vehicle that could take off as helicopter and then transition into conventional airplane for forward flight. There are several powertrain configurations for the VTOL aircraft, one of them is called Separate Lift Thrust (SLT) configuration where the forward flight uses different powertrain compared to the hover phase. Without complex mechanism to store the inactive hover powertrain, the hover powertrain components added a significant amount of aerodynamic drag during forward flight. This paper presents the assessment of the drag caused by the inactive propellers during the forward cruising flight phase. For this research, 26 propeller samples with diameter from 5 inch to 9 inch were used with various configuration and materials. They were then tested in wind tunnel facility and the resultant drag was measured. The results from the wind tunnel test shows that for lowest drag penalty, smaller propeller diameter with low pitch blade provide the lowest drag. Interestingly, from the results, it shows that there is a flight speed that can provide an optimum drag from the chosen propeller. A selection of optimum motor and battery can be made in the future based on result presented in this paper to further improve the performance of the UAV.
SummaryAn experimental study of the effects on the low-speed aerodynamic characteristics of a strake-like fillet is described, modelled on one used on an Airbus A320 variant fitted at the leading edge of a swept wing-plate junction. The wing, swept back at 20°, was of NACA 0015 section and chord 500 mm, both normal to its leading edge. A turbulent boundary layer had developed on the plate well ahead of the junction. The tests were conducted at a unit Reynolds number of 1.56 x 106 m-1.Surface pressure distributions were measured on the plate in the neighbourhood of the leading edge junction and also on the aerofoil and fillet at wing incidences of 0°, 3°, 6°, 9° and 12°. These were supplemented by surface oil-flow studies.The mean velocity and turbulence intensity fields around the leading edge were examined for incidences of 0° and 9°, using both a single tube yaw meter developed for the purpose and an X-wire anemometer. The X-wire anemometer was also used downstream of the trailing edge of the swept wing; five of the Reynolds stresses and the mean velocity field were measured.The sectional lift coefficients on the aerofoil were found to diminish as the junction was approached, slightly more so with the fillet than without it. The sectional drag coefficients due to pressure increased as the junction was approached, the fillet moderating this increase to only a small extent.However, the addition of the drooped fillet modified the flow considerably. The horseshoe-like vortex was less well defined than without it. At zero incidence, the peak in the turbulence intensity levels was virtually eliminated on what became effectively the compression side of the wing due to the local camber introduced by the asymmetric fillet. The turbulence levels were also reduced by the addition of the fillet at an incidence of 9°. However, the turbulent activity was spread through a larger proportion of the viscous region. The secondary flows and the turbulence activity in the wake are associated with unrecoverable kinetic energy and will be manifest as drag on the surfaces forming the junction.It is concluded that a carefully designed fillet, optimised for the cruise incidence of an aircraft, can reduce the peak turbulence levels in the junction. It remains unclear whether the total drag associated with the junction flow can be reduced significantly.However because of its effects on the turbulence, there may be other benefits, for example on the efficiency of downstream elements, such as fuselage-mounted engine intakes or the following stages of an axial flow machine. Junction fillets might also be used to control the scouring of river beds around bridge piers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.