This article investigated the effects of a quantizing magnetic field and temperature on Fermi energy oscillations in nanoscale semiconductor materials. It is shown that the Fermi energy of a nanoscale semiconductor material in a quantizing magnetic field is quantized. The distribution of the Fermi–Dirac function is calculated in low-dimensional semiconductors at weak magnetic fields and high temperatures. The proposed theory explains the experimental results in two-dimensional semiconductor structures with a parabolic dispersion law.