A time-domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert-Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations cannot be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown "future" field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known "past" ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time-domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.
Index Terms-Band-limited interpolation, electric field volume integral equation (EFVIE), extrapolation, marching on-in-time (MOT) method, time-domain analysis, transient analysis. I. INTRODUCTION T RANSIENT electromagnetic scattering from inhomogeneous dielectric volumes residing in an unbounded background medium can be analyzed by solving the timedomain electric field volume integral equation (TD-EFVIE) [1]-[8]. First, the scattered electric field is represented as a Manuscript