“…According to Navier solution technique, the governing equations of the plate in case of free vibration analysis are obtained by discarding transverse load (q) and in-plane compressive forces ( 2 2 2 3 3 0 0 0 12 66 22 66 22 12 66 2 2 3 2 3 3 2 0 22 12 66 0 3 2 (Sayyad and Ghugal, 2015) 0.28060 0.31415 0.34181 0.36543 HSDT (Reddy, 1984) 0.27955 0.31284 0.34020 0.36348 FSDT (Mindlin, 1951) 0.27757 0.30824 0.33284 0.35353 CPT (Kirchhoff, 1850) 0.30968 0.35422 0.39335 0.42884 Exact (Noor, 1973) 0 (Sayyad and Ghugal, 2015) 0.32696 0.37037 0.39498 0.41176 HSDT (Reddy, 1984) 0.33095 0.38112 0.41094 0.43155 FSDT (Mindlin, 1951) 0.32739 0.37110 0.39540 0.41158 CPT (Kirchhoff, 1850) 0.42599 0.55793 0.66419 0.75565 Exact (Noor, 1973) 0 (Sayyad and Ghugal, 2015) 0.3319 0.3821 0.4119 0.4324 HSDT (Reddy, 1984) 0.3308 0.3810 0.4108 0.4314 FSDT (Mindlin, 1951) 0.3319 0.3826 0.4130 0.4341 CPT (Kirchhoff, 1850) 0.4260 0.5579 0.6642 0.7556 Exact (Noor, 1973) 0 (Sayyad and Ghugal, 2015) 0.3384 0.3950 0.4287 0.4518 HSDT (Reddy, 1984) 0.3399 0.3994 0.4350 0.4592 FSDT (Mindlin, 1951) 0.3368 0.3930 0.4271 0.4506 CPT (Kirchhoff, 1850) 0.4259 0.5579 0.6641 0.7556 Exact (Noor, 1973) 0.3408 0.3979 0.4314 0.4537 Table 4: Comparison of non-dimensional natural frequencies of simply supported square laminated composite plates (b = a, a/h = 5).…”