“…We consider the second case which corresponds to Theorem (1.10) of [3]. Note that r s2 B2,w2 p8n`1, M 2 q " |tpx, y, zq t P Z 3 : x 2`y2`2 z 2 " 8n`1, px, y, zq " p1, 4, 0qpmod p4, 16, 2qqu| " |tpx, y, zq t P Z 3 : p4x`1q 2`p 16y`4q 2`2 p2zq 2 " 8n`1u| " |tpx, y, zq t P Z 3 : p4x`1q 2`1 6p4y`1q 2`8 z 2 " 8n`1u| " 1 4 |tpx, y, zq t P Z 3 : p2x`1q 2`1 6p2y`1q 2`8 z 2 " 8n`1u| " 1 4 |tpx, y, zq t P Z 3 : x 2`1 6y 2`8 z 2 " 8n`1,px, y, zq " p1, (iii) r s6 B6,w6 p16n`2, M 6 q " 0 if and only if 16n`2 " 2M 2 and all prime divisors of M are congruent to 1 modulo 4 and r s6 B6,w6 p16n`10, M 6 q ą 0.…”