We introduce a method for fast estimation of data-adapted, spatio-temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV)-minimization. Our approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs), and relies on two distinct sub-networks. The first sub-network estimates the regularization parameter-map from the input data. The second sub-network unrolls T iterations of an iterative algorithm which approximately solves the corresponding TVminimization problem incorporating the previously estimated regularization parameter-map. The overall network is trained end-to-end in a supervised learning fashion using pairs of cleancorrupted data but crucially without the need of having access to labels for the optimal regularization parameter-maps. We prove consistency of the unrolled scheme by showing that the unrolled energy functional used for the supervised learning Γ-converges as T tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. We apply and evaluate our method on a variety of large scale and dynamic imaging problems in which the automatic computation of such parameters has been so far challenging: 2D dynamic cardiac MRI reconstruction, quantitative brain MRI reconstruction, low-dose CT and dynamic image denoising. The proposed method consistently improves the TV-reconstructions using scalar parameters and the obtained parameter-maps adapt well to each imaging problem and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the proposed algorithm is entirely interpretable since it inherits the properties of the respective iterative reconstruction method from which the network is implicitly defined.