1964
DOI: 10.4064/fm-56-1-9-20
|View full text |Cite
|
Sign up to set email alerts
|

On the lexicographic dimension of linearly ordered sets

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
9
0
1

Year Published

1967
1967
2009
2009

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 13 publications
(10 citation statements)
references
References 0 publications
0
9
0
1
Order By: Relevance
“…Ordinal powers of the unit interval. V. Novak [4] has shown that F is an arc for any ordinal p. Here P is the set of all functions from pto I ordered lexicographically.…”
Section: Proofmentioning
confidence: 99%
“…Ordinal powers of the unit interval. V. Novak [4] has shown that F is an arc for any ordinal p. Here P is the set of all functions from pto I ordered lexicographically.…”
Section: Proofmentioning
confidence: 99%
“…In 1963, Novák [11] introduced the notion of the k-dimension of a finite poset X (for any integer k ≥ 2), extending the definition of dimension of posets given by Dushnik and Miller [4]. One of the first studies on 2-dimension is the foundational paper [15] by Trotter. In that paper he introduces the notion of the n-cube Q n and defines the 2-dimension of a finite poset X as the smallest positive integer n such that X can be embedded as a subposet of Q n .…”
Section: Introductionmentioning
confidence: 99%
“…, [8], [10], [2], [9], [4] Hat aber Skein letztes Element, dann betrachten wir seine Konfinalit~its-folge So < sl <"" < s~ <'"1 v < co6, wo 6 < 0t ist. Es gibt nun gewiB eine Ordinalzahl, und dann auch eine kleinste, ×, for die ~ nicht mehr definiert ist; denn ist for eine Ordinalzahl/~ die Menge 6~ definiert, so gibt es ein nichtleeres StOck S~ • ~.…”
unclassified