The efficiency of digital nonlinearity compensation (NLC) is analyzed in the presence of noise arising from amplified spontaneous emission noise (ASE) as well as from a non-ideal transceiver subsystem. Its impact on signal-to-noise ratio (SNR) and reach increase is studied with particular emphasis on split NLC, where the digital back-propagation algorithm is divided between transmitter and receiver. An analytical model is presented to compute the SNR's for non-ideal transmission systems with arbitrary split NLC configurations. When signal-signal nonlinearities are compensated, the performance limitation arises from residual signal-noise interactions. These interactions consist of nonlinear beating between the signal and co-propagating ASE and transceiver noise. While transceiver noise-signal beating is usually dominant for short transmission distances, ASE noisesignal beating is dominant for larger transmission distances. It is shown that both regimes behave differently with respect to the optimal NLC split ratio and their respective reach gains. Additionally, simple formulas for the prediction of the optimal NLC split ratio and the reach increase in those two regimes are reported. It is found that split NLC offers negligible gain with respect to conventional digital back-propagation (DBP) for distances less than 1000 km using standard single-mode fibers and a transceiver (back-to-back) SNR of 26 dB, when transmitter and receiver inject the same amount of noise. However, when transmitter and receiver inject an unequal amount of noise, reach gains of 56% on top of DBP are achievable by properly tailoring the split NLC algorithm. The theoretical findings are confirmed by numerical simulations.