Lattice tests are quality measures for assessing the intrinsic structure of pseudorandom number generators. Recently a new lattice test has been introduced by Niederreiter and Winterhof. In this paper, we present a general inequality that is satisfied by any periodic sequence. Then, we analyze the behavior of the linear congruential generators on elliptic curves (abbr. EC-LCG) under this new lattice test and prove that the EC-LCG passes it up to very high dimensions. We also use a result of Brandstätter and Winterhof on the linear complexity profile related to the correlation measure of order k to present lower bounds on the linear complexity profile of some binary sequences derived from the EC-LCG.