2018
DOI: 10.1155/2018/5327504
|View full text |Cite
|
Sign up to set email alerts
|

On the Locating Chromatic Number of Certain Barbell Graphs

Abstract: The locating chromatic number of a graph is defined as the cardinality of a minimum resolving partition of the vertex set ( ) such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in are not contained in the same partition class. In this case, the coordinate of a vertex V in is expressed in terms of the distances of V to all partition classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 10 publications
(7 citation statements)
references
References 12 publications
0
6
0
1
Order By: Relevance
“…Metode pada penelitian ini berupa kajian pustaka khususnya tentang konsep-konsep bilangan kromatik lokasi suatu graf (Chartrand et al, 2002), bilangan kromatik lokasi dari hasil kali Kartesian pada graf (Behtoei & Omoomi, 2016), bilangan kromatik lokasi pada pohon (graf) tertentu yaitu graf 𝑛𝑇 π‘˜,π‘š dan graf kembang api (𝐹 𝑛,π‘˜ ) (Asmiati, 2016), bilangan kromatik lokasi dari graf barbel tertentu (Asmiati et al, 2018), serta bilangan kromatik lokasi dari graf bayangan dan graf middle (Kabang et al, 2020). Lebih lanjut, pada bagian pembahasan, ditentukan bilangan kromatik lokasi untuk graf total dari graf bintang 𝑇(𝑆 𝑛 ) dan graf splitting dari graf bintang 𝑆′(𝑆 𝑛 ).…”
Section: Metode Penelitianunclassified
“…Metode pada penelitian ini berupa kajian pustaka khususnya tentang konsep-konsep bilangan kromatik lokasi suatu graf (Chartrand et al, 2002), bilangan kromatik lokasi dari hasil kali Kartesian pada graf (Behtoei & Omoomi, 2016), bilangan kromatik lokasi pada pohon (graf) tertentu yaitu graf 𝑛𝑇 π‘˜,π‘š dan graf kembang api (𝐹 𝑛,π‘˜ ) (Asmiati, 2016), bilangan kromatik lokasi dari graf barbel tertentu (Asmiati et al, 2018), serta bilangan kromatik lokasi dari graf bayangan dan graf middle (Kabang et al, 2020). Lebih lanjut, pada bagian pembahasan, ditentukan bilangan kromatik lokasi untuk graf total dari graf bintang 𝑇(𝑆 𝑛 ) dan graf splitting dari graf bintang 𝑆′(𝑆 𝑛 ).…”
Section: Metode Penelitianunclassified
“…However, a number of researches restricted on specific classes of graphs have been carried out. For instance, the locating chromatic number for some families of graphs has been found such as paths, cycles, complete multipartite, and bistars in [15], amalgamation of stars in [3], firecracker graphs in [4], Barbell graphs in [5], Kneser graphs in [12], powers of paths and cycles in [17], book graphs in [19], Origami graphs in [20], and MΓΆobius ladder graphs in [21]. Characterizations of graphs having certain locating chromatic number were studied such as trees with locating chromatic number 3 in [8], trees of order n with locating chromatic number n βˆ’ t for 2 ≀ t < n 2 in [22], unicyclic graphs of order n with locating chromatic number n βˆ’ 3 or n βˆ’ 2 in [2,7], and graphs of order n with locating chromatic number n βˆ’ 1 in [14].…”
Section: Introductionmentioning
confidence: 99%
“…Motivated by the result of Asmiati et al [3] about the determination of the locating chromatic number of certain barbell graphs, in this paper we determine the locating chromatic number of shadow path graphs and barbell graph containing shadow path for n β‰₯ 3.…”
Section: Introductionmentioning
confidence: 99%